Задачи с физическим смыслом

Содержание:

Советы по подготовке к ЕГЭ по профильной математике 2021

Повторите теорию

Не откладывайте на потом. Вспомните все определения, формулы и понятия перед там, как приступать к решению задач. Попробуйте писать формулы по памяти, а потом сверять

И не забывайте: важно не вызубрить темы, а понять их. 

Не пропускайте первую часть

Одна из грубых ошибок — переходить сразу к решению второй части ЕГЭ. Многие задачи из первой решаются довольно просто, но не стоит их недооценивать. Они составлены так, чтобы проверить не только навык решения, но и внимательность к деталям. Прорабатывайте номера из первой части, ведь для достижения цели важен каждый балл. 

Внимательно читайте текст заданий

Смотрите, в каких единицах измерения требуется ответ и нужно ли его округлять

В задании №7 важно понимать, какой график вам дан — производной или функции. От этого зависит ответ на заданный вопрос

В экономической задаче №17 нельзя использовать готовую формулу. Вам нужно написать математическую модель самостоятельно.

Научитесь хорошо считать в уме

Учитесь вычислять без калькулятора — некоторые задания требуют навыка быстрого счёта. К тому же, на экзамене вам нужно оставить как можно больше времени на сложные задачи и проверку.

Проверяйте решения и ответы

Например, убедитесь, что правильно перевели число из обычной дроби в десятичную. Арифметические ошибки также часто встречаются в задаче на финансовую математику

В задании №9 обратите внимание на знаки, особенно если вам попались тригонометрические функции

Также важно без ошибок определить ограничения x в задаче №13. Если исходное уравнение содержит tgx, то — cosx≠0

Если уравнение содержит квадратный корень, подкоренное выражение — ≥0

Если исходное уравнение содержит tgx, то — cosx≠0. Если уравнение содержит квадратный корень, подкоренное выражение — ≥0.

Проверяйте свои знания

Вы можете пройти тест на бесплатном вводном занятии с преподавателем или на сайте ФИПИ. Так вы узнаете, что помните хорошо, а что нужно повторить. Также вы можете воспользоваться нашей библиотекой знаний с полезными материалами для подготовки. Нужно только зарегистрироваться на сайте. 

Не бойтесь второй части 

Смело решайте задания из второй части. Попробуйте справиться с заданиями №13 и №15. Скорее всего, они вам хорошо знакомы. Чаще всего №13 оказывается не таким уж и сложным. Если вы хорошо знаете геометрию, начните с №14 или №16. Если вам по душе алгебра, решайте задачи на параметр и свойства чисел — №18, 19.

Отдыхайте 

Составьте комфортное расписание занятий. Подготовка к ЕГЭ по профильной математике в 2021 не должна быть тяжким бременем. Проводите больше времени на свежем воздухе, встречайтесь с друзьями и не забывайте про здоровый сон. 

Дробно рациональные уравнения

  • Если дробь равна нулю, то числитель равен нулю, а знаменатель не равен нулю.
  • Если хотя бы в одной части рационального уравнения содержится дробь, то уравнение называется дробно-рациональным.

Чтобы решить дробно рациональное уравнение, необходимо:

  1. Найти значения переменной, при которых уравнение не имеет смысл (ОДЗ)
  2. Найти общий знаменатель дробей, входящих в уравнение;
  3. Умножить обе части уравнения на общий знаменатель;
  4. Решить получившееся целое уравнение;
  5. Исключить из его корней те, которые не удовлетворяют условию ОДЗ.

Если в уравнении участвуют две дроби и числители их равные выражения, то знаменатели можно приравнять друг к другу и решить полученное уравнение, не обращая внимание на числители. НО учитывая ОДЗ всего первоначального уравнения

Обратные тригонометрические функции и простейшие тригонометрические уравнения

Арккосинус

Если, $|а|≤1$, то $arccos а$ – это такое число из отрезка $$, косинус которого равен $а$.

Если, $|а|≤1$, то $arccos а = t ⇔ \{\table \cos (t)=a; \0≤t≤π;$

$arcos(-a) = π-arccos⁡a$, где $0≤а≤1$

Уравнение вида $cos t=a$, eсли, $|а|≤1$, имеет решение

$t=±arccos ⁡ a+2πk; k∈Z$

Частные случаи

$cos t =1, t = 2πk;k∈Z$

$cos t = 0, t = {π}/{2}+πk;k∈Z$

$cos t = -1, t=π+2πk;k∈Z$

Найдите наименьший положительный корень уравнения $сos{2πx}/{3}=-{√3}/{2}$

$сos{2πx}/{3}=-{√3}/{2}$

${2πx}/{3}=±arccos⁡(-{√3}/{2})+2πk;kϵZ$

${2πx}/{3}=±(π-arccos{√3}/{2})+2πk;kϵZ$

${2πx}/{3}=±(π-{π}/{6})+2πk;kϵZ$

${2πx}/{3}=±{5π}/{6} +2πk;kϵZ$

Далее избавимся от всех величин, мешающих иксу. Для этого разделим обе части уравнения на ${2π}/{3}$

$x=±{5π·3}/{6·2π} +{2π·3}/{2π}k$

$x=±1,25+3k$

Чтобы найти наименьший положительный корень, подставим вместо $k$ целые значения

$k=0$

$x_1= -1,25$

$x_2=1,25$

$к=1$

$х_1=3-1,25=1,75$

$х_2=3+1,25=4,25$

Нам подходит $1,25$ – это и есть результат

Ответ: $1,25$

Арксинус

Если, $|а|≤1$, то $arcsin a$ – это такое число, из отрезка $[-{π}/{2};{π}/{2}]$, синус которого равен $а$.

Если, $|а|≤1$, то $arcsin a = t ⇔ \{\table \sint=a; \-{π}/{2}≤t≤{π}/{2};$

$arcsin(-a)= — arcsin a$, где $0≤а≤1$

Если, $|а|≤1$, то уравнение $sin t =a$ можно решить и записать двумя способами:

$1. t_1 = arcsin a+2πk;k∈Z$

$t_2 = (π- arcsin a)+ 2πk;k∈Z$

$2. t=(-1)^n arcsin ⁡ a+πn; n∈Z$

$3.$ Частные случаи

$sin t = 0, t=πk;k∈Z$

$sin t = 1, t={π}/{2}+2πk;k∈Z$

$sin t = -1,t=-{π}/{2}+2πk;k∈Z$

Арктангенс

$arctg a$ — это такое число, из отрезка $[-{π}/{2};{π}/{2}]$, тангенс которого равен $а$.

$arctg a = t ⇔ \{\table \tgt=a; \-{π}/{2}≤t≤{π}/{2};$

$arctg(-a)= — arctg a$

Прямоугольный треугольник

В прямоугольном треугольнике катетами называются две стороны треугольника, которые образуют прямой угол. Гипотенузой называется сторона, лежащая напротив прямого угла. 

Некоторые свойства прямоугольного треугольника:

  1. Сумма острых углов в прямоугольном треугольнике равна $90$ градусов.
  2. Если в прямоугольном треугольнике один из острых углов равен $45$ градусов, то этот треугольник равнобедренный.
  3. Катет прямоугольного треугольника, лежащий напротив угла в $30$ градусов, равен половине гипотенузы. (Этот катет называется малым катетом.)
  4. Катет прямоугольного треугольника, лежащий напротив угла в $60$ градусов, равен малому катету этого треугольника, умноженному на $√3$.
  5. Медиана прямоугольного треугольника, проведенная к его гипотенузе, равна ее половине и радиусу описанной окружности $(R)$. (Рис.14)
  6. Медиана прямоугольного треугольника, проведенная к его гипотенузе, делит треугольник на два равнобедренных треугольника, основаниями которых являются катеты данного треугольника. (Рис.14)

Один острый угол прямоугольного треугольника на $44°$ больше другого острого угла. Найдите больший острый угол.

Решение:

В прямоугольном треугольнике $АВС$ $∠А$ и $∠В$ – острые.

Пусть $∠ А – х$, тогда $∠ В — (х+44)$.

Сумма острых углов в прямоугольном треугольнике равна $90$ градусов.

На основании этого правила, составим и решим уравнение:

$х+х+44=90$

$2х+44=90$

$2х=90-44$

$2х=46$

$х=23$

Угол $В$ больший в этом треугольнике, через $«х»$ он записывался как, $х+44$, следовательно, $∠В=23+44=67°$.

Ответ: $67$

Теорема Пифагора

В прямоугольном треугольнике сумма квадратов катетов равна квадрату гипотенузы. 

$АС^2+ВС^2=АВ^2$

Соотношение между сторонами и углами в прямоугольном треугольнике:

В прямоугольном треугольнике $АВС$, с прямым углом $С$ 

Для острого угла $В$: $АС$ — противолежащий катет; $ВС$ — прилежащий катет.

Для острого угла $А$: $ВС$ — противолежащий катет; $АС$ — прилежащий катет.

  1. Синусом $(sin)$ острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе.
  2. Косинусом $(cos)$ острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе.
  3. Тангенсом $(tg)$ острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему.
  4. Котангенсом $(ctg)$ острого угла прямоугольного треугольника называется отношение прилежащего катета к противолежащему.
  5. Основное тригонометрическое тождество: $sin^2x+cos^2x=1$
  6. В прямоугольном треугольнике синус одного острого угла равен косинусу другого острого угла.
  7. Синусы, косинусы, тангенсы и котангенсы острых равных углов равны.
  8. Синусы смежных углов равны, а косинусы, тангенсы и котангенсы отличаются знаками: для острых углов положительные значения, для тупых углов отрицательные значения.

Значения тригонометрических функций некоторых углов:

$α$ $30$ $45$ $60$
$sinα$ ${1}/{2}$ ${√2}/{2}$ ${√3}/{2}$
$cosα$ ${√3}/{2}$ ${√2}/{2}$ ${1}/{2}$
$tgα$ ${√3}/{3}$ $1$ $√3$
$ctgα$ $√3$ $1$ ${√3}/{3}$

Какие темы важно знать для ЕГЭ по математике 2022?

В математике, как и в любом предмете, есть опорные темы. Если вы их выучите, будет легче справиться с экзаменом.

Формулы тригонометрии

Очень важно знать формулы тригонометрии и уметь применять их. Хорошая новость: в справочных материалах можно найти несколько тригонометрических формул

Но формул гораздо больше. Я советую не зубрить их, а научиться выводить: приходить к формулам шаг за шагом, опираясь на тождества. Кстати, мы учим выводить формулы на курсах подготовки к ЕГЭ: это полезно, чтобы оказаться на экзамене во всеоружии и ничего не перепутать.

Квадратные уравнения

Эти уравнения мы учимся решать еще в 7 классе. Они встречаются в ЕГЭ по математике постоянно: и как самостоятельные задания, и внутри более сложных уравнений или неравенств. Квадратные уравнения могут встретиться в математических моделях № 8 и № 15, в задачах на геометрию и стереометрию, в задании № 17 с параметром.

Самое главное — хорошо знать универсальные методы решения. Первый — через формулу дискриминанта, второй — через теорему Виета, которая может сэкономить время на экзамене.

Треугольники

Эта замечательная тема, которую проходят в 7 классе — основа основ всей геометрии. Она нужна и для решения стереометрии. и для простейших планиметрических задач. Еще треугольники необходимы, чтобы освоить огромное количество теорем

Выучите все, что с ними связано! Особое внимание обратите на прямоугольные треугольники, которые встречаются чаще остальных — тогда геометрические задачи сразу станут проще

Проценты

Самая нелюбимая тема моих учеников после тригонометрии, которую необходимо хорошо знать. Проценты нужны для реальной математики — это № 8 (с кратким ответом) и № 15 (с развернутым ответом). Понимание этой темы может принести вам 3 первичных балла.

Что такое ЕГЭ по математике

Что такое ЕГЭ по математике — баллы, задания, процент выполнения…

Всех с начала 10 класса (сразу после окончания ОГЭ) пугают предстоящими выпускными экзаменами и постепенно начинают давать разрозненные задания. К 11 классу картина заданий складывается в единный вариант, но какие знания в каком задании нам потребуется? Как готовиться? Об этом и поговорим.

Начнем со статистики выполнения заданий в 2017 году:

С 13-ым и последующими заданиями справились лишь несколько процентов учеников: 1 первичный балл получили 12,9% сдававших, а 2 балла — 36,3%. Аналогично с другими заданиями из второй части.  

Существует первичный балл и итоговый балл, график перевода представлен ниже.

Первичный балл – это предварительный балл ЕГЭ, который получается путем обычного суммирования числа правильных ответов. В первой части за каждое из 12 заданий можно получить 1 первичный балл. В части второй задания стоят дороже:

В сумме за все ЕГЭ по математике можно получить 12+2+2+2+3+3+4+4 = 32 первичных балла.

Итоговый (тестовый) балл — это перевод первичного балла в стобальную систему. Причем баллы распределяется неравномерно. 

Экзамен по профильной математике  — единственный ЕГЭ, где можно получить 100 итоговых баллов, потеряв при этом 2 первичных балла.

Как видно из графика с 0 до 13 первичных баллов, один первичный балл стоит примерно 5 итоговых. Дальше баллы получать труднее: каждый первичный балл приносит только 2 итоговых балла.

Нет никакой разницы, если вы верно решили первые 12 заданий или 8 в первой части, 13ое и 15ое, все равно у вас будет 12 первичных баллов и 62 итоговых.

Средний балл за профильную математику в 2017 году составил 47 баллов.

За всю правильно выполненную первую часть можно получить 62 балла, но, исходя из статистики, мало кому это удается. Многие учителя, особенно из физ-мат лицеев, говорят, что первые 12 заданий нужно решать за 45-50 минут. Это правда, если вы хотите получить 100 баллов и умеете решать все задачи. Но если вы расчитываете на решение 13, 15, 17 задания, то на первую часть стоит потратить раза в 2 больше времени, чтоб избежать глупых ошибок и проверить ее максимально тщательно, каждый балл на счету. За одно неправильное задание в первой части вы теряете от двух до шести итоговых баллов. 

p.s. В 2016 году сдавал ЕГЭ, по невнимательности неправильно сделал 12 задание, итог 94 балла, вместо 96.

Несколько полезных советов:

Четко определите минимальное количество баллов, которое вам нужно («чем больше, тем лучше» не пойдет). 

Составьте список заданий, которые вам проще всего решить, чтобы набрать нужный минимум.

Доведите этот минмум так, чтобы стабильно было 90% решено правильно (для многих это №1-13, №15 и №17).

Начните решать задачку «про запас». Например, №14 или первые пункты №19. Никто не знает, какое задание в этом году будет необычным (трудным). На досрочном экзамене в 2017 году это была 17 задача. На основном это была 14. Возможно, то задание, которое вы готовили, окажется непосильным. 

Решайте сложные задания. Статиститка показывает, что те, кто решали более сложные варианты, лучше справлялись с ЕГЭ (при одном и том же уровне). Например, варианты Ларина или Чупро. Объясняется это тем, конечно, что задания, которые будут проще, вы и решите с большим процентом правильно. Также каждый год на ЕГЭ дают задания, которые не похожи на предыдущие года и имееют только отдаленные аналоги. Решая более сложные задания, вы научитесь мыслить, что существенно поможет вам не встать в ступор при виде «неизвестного» задания. Книжки «30 Вариантов» обычно проще, чем реальные задания на ЕГЭ. Сайт «Решу ЕГЭ» больше всех похож на реальный ЕГЭ.

Пробуйте сами себе устроить экзамен, решая 4 часа вариант ЕГЭ. 

Логарифмические уравнения

Логарифмическими уравнениями называют уравнения вида $log_{a}f(x)=log_{a}g(x)$, где $а$ – положительное число, отличное от $1$, и уравнения, сводящиеся к этому виду.

Для решения логарифмических уравнений необходимо знать свойства логарифмов: все свойства логарифмов мы будем рассматривать для $a > 0, a≠ 1, b> 0, c> 0, m$ – любое действительное число.

1. Для любых действительных чисел $m$ и $n$ справедливы равенства:

$log_{а}b^m=mlog_{a}b;$

$log_{a^m}b={1}/{m}log_{a}b.$

$log_{a^n}b^m={m}/{n}log_{a}b$

Пример:

$log_{3}3^{10}=10log_{3}3=10;$

$log_{5^3}7={1}/{3}log_{5}7;$

$log_{3^7}4^5={5}/{7}log_{3}4;$

2. Логарифм произведения равен сумме логарифмов по тому же основанию от каждого множителя.

$log_a(bc)=log_{a}b+log_{a}c$

3. Логарифм частного равен разности логарифмов от числителя и знаменателя по тему же основанию

$log_{a}{b}/{c}=log_{a}b-log_{a}c$

4. При умножении двух логарифмов можно поменять местами их основания

$log_{a}b∙log_{c}d=log_{c}b∙log_{a}d$, если $a, b, c$ и $d > 0, a≠1, b≠1.$

5. $c^(log_{a}b)=b^{log_{a}b}$, где $а, b, c > 0, a≠1$

6. Формула перехода к новому основанию

$log_{a}b={log_{c}b}/{log_{c}a}$

7. В частности, если необходимо поменять местами основание и подлогарифмическое выражение

$log_{a}b={1}/{log_{b}a}$

Можно выделить несколько основных видов логарифмических уравнений:

— Простейшие логарифмические уравнения: $log_{a}x=b$. Решение данного вида уравнений следует из определения логарифма, т.е. $x=a^b$ и $х > 0$

Пример:

$log_{2}x=3$

Представим обе части уравнения в виде логарифма по основанию $2$

$log_{2}x=log_{2}2^3$

Если логарифмы по одинаковому основанию равны, то подлогарифмические выражения тоже равны.

$x = 8$

Ответ: $х = 8$

— Уравнения вида: $log_{a}f(x)=log_{a}g(x)$. Т.к. основания одинаковые, то приравниваем подлогарифмические выражения и учитываем ОДЗ:

$\table\{\ f(x)=g(x);\ f(x)>0;\ g(x) > 0, а > 0, а≠1;$

Пример:

$log_{3}(x^2-3x-5)=log_{3}(7-2x)$

Т.к. основания одинаковые, то приравниваем подлогарифмические выражения

$x^2-3x-5=7-2x$

Перенесем все слагаемые в левую часть уравнения и приводим подобные слагаемые

$x^2-x-12=0$

$x_1=4,x_2= -3$

Проверим найденные корни по условиям $\table\{\ x^2-3x-5>0;\ 7-2x>0;$

При подстановке во второе неравенство корень $х=4$ не удовлетворяет условию, следовательно, он посторонний корень

Ответ: $х=-3$

Метод замены переменной.

В данном методе надо:

  1. Записать ОДЗ уравнения.
  2. По свойствам логарифмов добиться того, чтобы в уравнении получились одинаковые логарифмы.
  3. Заменить $log_{a}f(x)$ на любую переменную.
  4. Решить уравнение относительно новой переменной.
  5. Вернутся в п.3, подставить вместо переменной значение и получить простейшее уравнение вида: $log_{a}x=b$
  6. Решить простейшее уравнение.
  7. После нахождения корней логарифмического уравнения необходимо поставить их в п.1 и проверить условие ОДЗ.

Пример:

Решите уравнение $log_{2}√x+2log_{√x}2-3=0$

Решение:

1. Запишем ОДЗ уравнения:

$\table\{\ х>0,\text»так как стоит под знаком корня и логарифма»;\ √х≠1→х≠1;$

2. Сделаем логарифмы по основанию $2$, для этого воспользуемся во втором слагаемом правилом перехода к новому основанию:

$log_{2}√x+{2}/{log_{2}√x}-3=0$

3. Далее сделаем замену переменной $log_{2}√x=t$

4. Получим дробно — рациональное уравнение относительно переменной t

$t+{2}/{t}-3=0$

Приведем все слагаемые к общему знаменателю $t$.

${t^2+2-3t}/{t}=0$

Дробь равна нулю, когда числитель равен нулю, а знаменатель не равен нулю.

$t^2+2-3t=0$, $t≠0$

5. Решим полученное квадратное уравнение по теореме Виета:

$t^2-3t+2=0$

$t_1=1; t_2=2$

6. Вернемся в п.3, сделаем обратную замену и получим два простых логарифмических уравнения:

$log_{2}√x=1$, $log_{2}√x=2$

Прологарифмируем правые части уравнений

$log_{2}√x=log_{2}2$, $log_{2}√x=log_{2}4$

Приравняем подлогарифмические выражения

$√x=2$, $√x=4$

Чтобы избавиться от корня, возведем обе части уравнения в квадрат

$х_1=4$, $х_2= 16$

7. Подставим корни логарифмического уравнения в п.1 и проверим условие ОДЗ.

$\{\table\ 4 >0; \4≠1;$

Первый корень удовлетворяет ОДЗ.

$\{\table\ 16 >0; \16≠1;$ Второй корень тоже удовлетворяет ОДЗ.

Ответ: $4; 16$

Уравнения вида $log_{a^2}x+log_{a}x+c=0$. Такие уравнения решаются способом введения новой переменной и переходом к обычному квадратному уравнению. После того, как корни уравнения будут найдены, надо отобрать их с учетом ОДЗ.

Задания ЕГЭ по математике профильный уровень 2019 с решением. / Математика / ЕГЭ :: Бингоскул

На ЕГЭ по математике профильного уровня в 2019 г. никаких изменений нет –  программа экзамена, как и в прошлые годы, составлена из материалов основных математических дисциплин. В  билетах будут присутствовать и математические, и геометрические, и алгебраические задачи.

Изменений в КИМ ЕГЭ 2019 по математике профильного уровня нет.

Особенности заданий ЕГЭ по математике-2019

Осуществляя подготовку к ЕГЭ по математике (профильной), обратите внимание на основные требования экзаменационной программы. Она призвана проверить знания углубленной программы: векторные и математические модели, функции и логарифмы, алгебраические уравнения и неравенства
Отдельно потренируйтесь решать задания по теории вероятности

Важно проявить нестандартность мышления

Структура экзамена

Задания ЕГЭ профильной математики разделены на два блока.

  1. Часть — краткие ответы, включает 8 задач, проверяющих базовую математическую подготовку и умение применять знания по математике в повседневности.
  2. Часть — краткие и развернутые ответы. Состоит из 11 задач, 4 из которых требуют короткого ответа, и 7 – развернутого с аргументацией выполненных действий.
  • Повышенной сложности — задания 9-17 второй части КИМа.
  • Высокого уровня сложности — задачи 18-19 –. Эта часть экзаменационных заданий проверяет не только уровень математических знаний, но и наличие или отсутствие творческого подхода к решению сухих «циферных» заданий, а также  эффективность умения использовать знания и навыки в качестве профессионального инструмента.

Важно!  Поэтому  при  подготовке к ЕГЭ теорию по математике всегда подкрепляйте решением практических  задач

Как будут распределять баллы

Задания части первой КИМов поматематике близки к тестам ЕГЭ базового уровня, поэтому высокого балла на них набрать невозможно.

Баллы за каждое задание по математике профильного уровня распределились так:

  • за правильные ответы на задачи №1-12 – по 1 баллу;
  • №13-15 – по 2;
  • №16-17 – по 3;
  • №18-19 – по 4.

Длительность экзамена и правила поведения на ЕГЭ

Для выполнения экзаменационной работы-2019 ученику отведено 3 часа 55 минут (235 минут).

В это время ученик не должен:

  • вести себя шумно;
  • использовать гаджеты и другие технические средства;
  • списывать;
  • пытаться помогать другим, или просить помощи для себя.

За подобные действия экзаменующегося могут выдворить из аудитории.

На государственный экзамен по математике разрешено приносить с собой только линейку, остальные материалы  вам выдадут непосредственно перед ЕГЭ. Справочные материалы выдаются на месте.

Эффективная подготовка — это решение онлайн тестов по математике 2019. Выбирай тренировочные задания и получай максимальный балл! 

Физический смысл производной

Если материальная точка движется прямолинейно и ее координата изменяется в зависимости от времени по закону $x(t)$, то мгновенная скорость данной точки равна производной функции.

$v(t) = x'(t)$

Точка движется по координатной прямой согласно закону $x(t)= 1,5t^2-3t + 7$, где $x(t)$ — координата в момент времени $t$. В какой момент времени скорость точки будет равна $12$?

Решение:

1. Скорость – это производная от $x(t)$, поэтому найдем производную заданной функции

$v(t) = x'(t) = 1,5·2t -3 = 3t -3$

2. Чтобы найти, в какой момент времени $t$ скорость была равна $12$, составим и решим уравнение:

$3t-3 = 12$

$3t = 15$

$t = 5$

Ответ: $5$

Тригонометрические тождества

  1. $tgα={sinα}/{cosα}$
  2. $ctgα={cosα}/{sinα}$
  3. $sin^2α+cos^2α=1$ (Основное тригонометрическое тождество)

Из основного тригонометрического тождества можно выразить формулы для нахождения синуса и косинуса

$sinα=±√{1-cos^2α}$

$cosα=±√{1-sin^2α}$

  1. $tgα·ctgα=1$
  2. $1+tg^2α={1}/{cos^2α}$
  3. $1+ctg^2α={1}/{sin^2α}$

Вычислить $sin t$, если $cos t = {5}/{13} ; t ∈({3π}/{2};2π)$

Найдем $sin t$ через основное тригонометрическое тождество. И определим знак, так как $t ∈({3π}/{2};2π)$ -это четвертая четверть, то синус в ней имеет знак минус

$sin⁡t=-√{1-cos^2t}=-√{1-{25}/{169}}=-√{{144}/{169}}=-{12}/{13}$

Формулы суммы и разности

$cosα+cosβ=2cos{α+β}/{2}·cos{α-β}/{2}$

$cosα-cosβ=2sin{α+β}/{2}·sin{β-α}/{2}$

$sinα+sinβ=2sin{α+β}/{2}·cos{α-β}/{2}$

$sinα-sinβ=2sin{α-β}/{2}·cos{α+β}/{2}$

Формулы произведения

$cosα·cosβ={cos(α-β)+cos(α+β)}/{2}$

$sinα·sinβ={cos(α-β)-cos(α+β)}/{2}$

$sinα·cosβ={sin(α+β)+sin(α-β)}/{2}$

Формулы сложения

$cos(α+β)=cosα·cosβ-sinα·sinβ$

$cos(α-β)=cosα·cosβ+sinα·sinβ$

$sin(α+β)=sinα·cosβ+cosα·sinβ$

$sin(α-β)=sinα·cosβ-cosα·sinβ$

Вычислить $sin12cos18+cos12sin18$

Данное выражение является синусом суммы

$sin12cos18+cos12sin18= sin⁡(12+18)=sin30=0.5$

Задача (Вписать в ответ число)

Вычислить $sin{5π}/{12} cos {π}/{12}+cos {π}/{12} sin {5π}/{12}$

Решение:

Данное выражение является синусом суммы

$sin {5π}/{12} cos {π}/{12}+cos {π}/{12} sin {5π}/{12}=sin⁡({π}/{12}+{5π}/{12})=sin {6π}/{12}=sin {π}/{2}=1$

Ответ: $1$

Что изменилось в 2022 в ЕГЭ по профильной математике

И начнем мы с инноваций, которые уже официально утверждены ФИПИ. 

1. Изменения, связанные с заданиями:

     Ура, ликуйте, выпускники, ведь количество заданий уменьшилось. Вариант ЕГЭ по профилю будет состоять из 18 заданий. Правда, изменения коснулись самых любимых одиннадцатиклассниками номеров. Так, например, никогда больше в КИМах мы не увидим первого номера. Это звание теперь гордо носит решение простейшего уравнения (в прошлом номер 5). На место привычного 2 задания встал бывший номер 4 — теория вероятности, а на четвертом месте оказалась планиметрия, которая раньше шла шестым заданием.

     Резко позиции сдал номер 9, ставший в обновленной версии базовым 5. Кстати, раньше это задание имело маркировку повышенной сложности. С 8 на 6 перешла стереометрия, а 10 переместилось на 8. Девятой по счету теперь решаем задачу на движение, сплавы и смеси или проценты.

     А вот в “полку” второй части экзамена по профильной математике явно убыло. В геройском бою потеряло свой пункт 5 задание 13 — теперь отбирать нужные корни заданного промежутка не придется.

     Самые крупные изменения в экзамене по профилю потерпел 15 номер. Когда-то давно эксперты решили упростить задание и вместо системы уравнения и неравенства оставили обычные неравенства. Но в этом году все повернулось на 360 градусов (математики, поняли, о чем мы?). Усложненный вариант вновь будет представлять собой систему уравнения и неравенства.

      Вот и все, что касается изменений непосредственно заданий в ЕГЭ по математике профильного уровня 2022. Двигаемся дальше! 

2. Новые задания на профиле 2022: 

     Да-да, новинками в этом сезоне не обделили и ЕГЭ по математике профильного уровня. Что же нас ждет за этой дверью?

     Задание 3 — анализ функций. Формат, который годами игнорировался на экзамене по профильной математике, появился в 2022. Ух, а вот сейчас пристегивайте ремни, мы вплотную приблизились к заданиям повышенной сложности.Номер 10 из блока «Элементы комбинаторики, статистики и теории вероятностей» и задание 11 на комплексные числа, напомним, раньше на ЕГЭ эту тему не затрагивали в принципе (даже у профильщиков). 

3. Критерии оценивания ЕГЭ по профильной математике 

     По традиции экзамен по профильной математике в 2022 году будет оцениваться по давно разработанной системе первичных баллов. Максимальный балл за выполнение работы увеличился за счет сложности 13 задания: подняли с 2 до 3, за номер 15 теперь максимально можно получить 2 балла. В общей сложности за экзамен по профилю теперь можно получить 31 первичный балл.

     “Ну вот получил я, например, 28, а во вторичных-то это сколько?” — обязательно спросите вы. И мы ответим. Для перевода во вторичную систему существует специально разработанная таблица, ориентироваться в которой предельно просто. Ищем количество набранных баллов в первом столбике и смотрим их перевод во втором. Вуаля, вот и ваш результат!

     А сейчас немного про минимальные пороги. Конечно, мы уверены, что вы превзойдете эти баллы в два, три, а то и все 10 раз, но все-таки знать это необходимо. Итак, чтобы получить аттестат и иметь возможность поступить в вуз, нужно набрать 5 первичных=23 вторичных балла. А если ваша мечта — поступление в подведомственные вузы Минобрнауки, то минимумом будет 7 первичных=33 вторичных балла. 

Линейные уравнения

Линейным называется такое уравнение, в котором неизвестное $x$ находится в числителе уравнения и без показателей. Например: $2х – 5 = 3$

Линейные уравнения сводятся к виду $ax = b$, которое получается при помощи раскрытия скобок, приведения подобных слагаемых, переноса слагаемых из одной части уравнения в другую, а также умножения или деления обеих частей уравнения на число, отличное от нуля.

$5 (5 + 3х) — 10х = 8$

Раскроем скобки.

$25 + 15х — 10х = 8$

Перенесем неизвестные слагаемые в левую часть уравнения, а известные в правую. При переносе из одной части в другую, у слагаемого меняется знак на противоположный.

$15х — 10х = 8 — 25$

Приведем подобные слагаемые.

$5х = -17$ — это конечный результат преобразований.

После преобразований к виду $ax = b$, где, a=0, корень уравнения находим по формуле $х = {b}/{a}$

$х=-{17}/{5}$

$х = — 3,4$

Ответ: $- 3,4$

Основные правила дифференцирования

1. Производная суммы (разности) равна сумме (разности) производных

$(f(x) ± g(x))’= f'(x)±g'(x)$

Найти производную функции $f(x)=3x^5-cosx+{1}/{x}$

Производная суммы (разности) равна сумме (разности) производных.

$f'(x) = (3x^5 )’-(cos x)’ + ({1}/{x})’ = 15x^4 + sinx — {1}/{x^2}$

2. Производная произведения

$(f(x) · g(x))’= f'(x) · g(x)+ f(x) · g(x)’$

Найти производную $f(x)=4x·cosx$

$f'(x)=(4x)’·cosx+4x·(cosx)’=4·cosx-4x·sinx$

3. Производная частного

$({f(x)}/{g(x)})’={f'(x)·g(x)-f(x)·g(x)’}/{g^2(x)}$

Найти производную $f(x)={5x^5}/{e^x}$

$f'(x)={(5x^5)’·e^x-5x^5·(e^x)’}/{(e^x)^2}={25x^4·e^x-5x^5·e^x}/{(e^x)^2}$

4. Производная сложной функции равна произведению производной внешней функции на производную внутренней функции

$f(g(x))’=f'(g(x))·g'(x)$

$f(x)= cos(5x)$

$f'(x)=cos'(5x)·(5x)’=-sin(5x)·5= -5sin(5x)$

Система оценок в ЕГЭ. Перевод первичных баллов в тестовые.

В ЕГЭ по математике, начиная с 2015 года, внесены существенные изменения. Экзамен разделён на два отдельных: базовый уровень и профильный уровень.

В базовом уровне сохранена пятибалльная система оценок. Для успешной сдачи экзамена и получения аттестата требуется оценка не ниже обычной тройки. Сколько заданий нужно решить на тройку? Этот минимум устанавливается, обычно, ближе к экзаменам. А то и после.) Поэтому, будем ориентироваться на ЕГЭ прошлых лет. Тройка ставилась за 7 — 11 верно решённых заданий. 12 — 16 заданий оценивались на 4, 17 — 20, соответственно, — на 5.

В профильном уровне сохранена система оценок ЕГЭ предыдущих лет. Система эта достаточно сложная. Но оценить свои возможности и ожидаемый результат ориентировочно можно. Для оценки результатов ЕГЭ используются две шкалы. Шкала первичных баллов и шкала тестовых баллов. Сначала вы набираете первичые баллы, а потом осуществляется перевод первичных баллов в тестовые.

Шкала первичных баллов ЕГЭ известна из спецификации КИМ для проведения ЕГЭ по математике (профильный уровень). Выглядит она так:

Любое задание с кратким ответом (бывшая часть «В») весит один первичный балл. Таких заданий будет 12. Следовательно, в идеальном варианте, на этих заданиях можно набрать двенадцать первичных баллов.

Задания с развёрнутым решением 13, 14 и 15 весят по два первичных балла каждое. Задания 16 и 17 — по три балла. Задания 18 и 19 — аж по четыре балла каждое. Максимальное количество первичных баллов за выполнение всей работы — 32.

Замечу, что сделанное частично или с ошибками задание с развёрнутым решением тоже оценивается! Можно получить не 4, так хоть 3, 2 или 1 балл. А можно и ничего не получить. Напомню, это первичные баллы.

Перевод первичных баллов в тестовые проводится уже после экзамена. Тестовые баллы, от 0 до 100 — это именно те баллы, которые идут в сертификат и учитываются приёмными комиссиями различных учебных заведений. Сама методика пересчёта первичных баллов в тестовые достаточно сложна. Расчет учитывает реальные результаты сдачи ЕГЭ по всей стране. На обработку результатов ЕГЭ уходит 6-8 дней.

По этим причинам, сказать точно, сколько вы получите тестовых баллов заранее невозможно. Однако, вполне можно сориентироваться на схему оценок из прошлых лет. Практические результаты перевода первичных баллов в тестовые менялись не так уж сильно.

Перевод первичных баллов (за сделанные задания) в привычные оценки и тестовую шкалу 100 баллов выглядит примерно так:

0 — 5 первичных баллов –   отметка «2»; 0-26 тестовых балла;

6 — 12 – отметка «3»; 27-50 баллов;

12 — 20 – отметка «4»; 50-75 баллов;

20 — 32 – отметка «5»; 75-100 баллов.

Минимальный порог в прошлые годы составлял 6 первичных баллов или 27 тестовых баллов.

Итак, работа сдана и вы томительно ожидаете результатов. Ходите на сайты и, наконец, получаете результаты! Если всё хорошо, я вас поздравляю! А если нет?

Можно ли оспорить оценку по ЕГЭ? Да. На это у вас есть два дня после официального объявления результатов. Нужно обратиться к своим преподавателям, они расскажут, где найти секретаря конфликтной комиссии. А тот расскажет, что и как надо делать. Это будет апелляция по результатам (не путать с апелляцией по процедуре проведения!).

Вы имеете право присутствовать на апелляции. Конфликтная комиссия рассмотрит вашу работу, проверит, правильно ли компьютер распознал ваши ответы, проверит ход решения и сделает вывод: отклонить апелляцию, увеличить количество баллов, уменьшить количество баллов. Да-да! Может и уменьшить! Палка о двух концах. Отсюда:

Практические советы:

1. Апеллировать по результатам имеет смысл в случае необходимости. Это случай, когда оценка вашей работы резко не соответствует ожиданиям. Или вам нечего терять.

Для успешной апелляции очень желательно быть уверенным в правильности выполненных заданий и помнить свои решения. Иначе, даже увидев свою работу, вы не сможете аргументировано доказать свою правоту. В комиссии не троечники сидят!

Однако открою тайну. Комиссия, как и все педагогическое начальство, заинтересована в хороших результатах. Явные ошибки не прощают, конечно. Иначе самой комиссии двойку поставят…. Но все сомнительные места трактуются в пользу ученика. Это радует.

Вот так, примерно, выглядит это самое ЕГЭ. Почему примерно? Потому, что из года в год в ЕГЭ вносятся изменения и дополнения. Изменения эти направлены, в основном, на ликвидацию прежних недоработок.   Дело живое, а совершенству нет предела….)

Предыдущая страница: Что будет на ЕГЭ по математике? Как работать на ЕГЭ?

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector